12. Atoms, Light and their Interaction

In practice, the electromagnetic interaction between atoms and light is mani-
fested in two main ways, coherently or incoherently. The incoherentaspectis seen
as damping, noise and radiation, with the principal quantum-mechanical effect
being seen as the decay of an excited atom. The coherent aspect arose with the
development of the laser as a laboratory tool, and is seen principally in the ma-
nipulation of atomic states by the application of appropriately tuned and timed
laser pulses. This can be done with great flexibility and precision, and can be used
to exert mechanical forces on atoms, leading to the trapping and cooling of atoms.

These two aspects are the extremes. It is never possible to eliminate the inco-
herent aspects completely, so that a full theory always requires their inclusion,
even when the interaction is principally coherent. This is especially true if pre-
cise manipulation of the quantum state of an atom is the aim, as in the study of
quantum information.

As in the classical case, in quantum mechanics there is a close connection be-
tween damping and noise, but in addition, the underlying probabilistic nature of
quantum mechanics introduces noise which is purely quantum-mechanical, and
not directly connected with damping.

This chapter therefore studies the simplest atomic system—an atom approxi-
mated by only two energy levels—interacting with the simplest forms of the elec-
tromagnetic field. The two topics are:

i) The Decay of an Excited Atom: Here the atom interacts with an electromag-
netic field initially in the vacuum state. We do this because the formalism for
quantum noise and damping can become quite elaborate, and the motiva-
tion for this formalism can consequently become rather obscure. The radia-
tion of a single photon from a single atom—itself simplified to a system with
only two energy levels—provides a useful elementary physical example, intro-
ducing the concepts necessary for a full formulation of quantum stochastic
processes. A more detailed development of quantum stochastic formalism is
presented in the following two chapters, and this is extended and completed
in Book IL

i) The Manipulation of the Quantum State of an Atom Using a Coherent Optical
Field: Here we omit the quantization of the electromagnetic field, and study
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the possible manipulations of the state of a two-level atom that can be exe-
cuted using coherent optical pulses.

12.1 Interaction with the Quantized Radiation Field

We will use the quantized electromagnetic field as formulated in Sect. 11.1.3, and
the main task of this section is to introduce an appropriate formulation of the
interaction with a quantized atom.

12.1.1 Hamiltonian and Schrédinger Equation

a) Use of the Schriddinger Picture: For computational purposes the Schréding-
er picture is a more appropriate starting point than the Heisenberg picture. This
means that the electromagnetic field operators have a mode expansion like those
in (11.1.46, 11.1.48), but without the time-dependent exponentials, namely

1

n 2
Ag(x) = %( zwkgo) (akuk(x)+a;u,’;(x)), (12.1.1)
1
. hwk 2 too%
Es(x) =i (—) Ui (x) —a, u (x)|. (12.1.2)
) ; 2¢9 (ak £ KTk )

However, in the remainder of this treatment in the Schrodinger picture, we will not
explicitly write the subscript S—all operators will implicitly be in the Schrodinger
picture.

b) Interaction Hamiltonian: We consider an electron interacting with the quan-
tized electromagnetic field, and bound to a nucleus by an electrostatic field. Using
the Coulomb gauge as in Sect. 11.1.3, the Hamiltonian for such a system is

—eA(x))?
H = (p__ze_mg))_ + ed(x) + Ha. (12.13)

In this equation:

i) The problem is formulated in the Schrédinger picture, so the vector potential
operator has no time dependence.

ii) The static potential ¢p(x) represents the Coulomb potential of the nucleus.

iii) Hgp is the Hamiltonian for the quantized electromagnetic field, as defined in
equations (11.1.49) and (11.1.50).

We rewrite the first two parts of (12.1.3) as a Hamiltonian for the bound electron,
and a Hamiltonian for the interaction with the quantized electromagnetic field.
Thus, we write

H = Hy+ Vine + HEMm, (12.1.4)
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in which
pz
Hy = om +ed(x), (12.1.5)
Vint = ——e—(p- A(x) + A(x) - p) + e—zA(x) -A(x). (12.1.6)
2m 2m

Note that the choice of the Coulomb gauge condition (11.1.34) leads to
p-Ax)—-Ax)-p = —-ihV-A(x) =0, (12.1.7)
so that the order of factors is not important.

c) Simplifications and Approximations: Formulating the interaction in terms of
the vector potential can be awkward, and a reformulation in terms of the elec-
tric field and a dipole moment has many advantages, particularly in making ap-
proximations. The simplest explanation of the transformation is based on the La-
grangian formulation, in which the electromagnetic interaction of a particle with
an electromagnetic field is achieved by the interaction Lagrangian

Lt = ex-A(x, 1). (12.1.8)

It is always possible to add a total time derivative to the Lagrangian, so we add
such a term so that

) d
Lot — ek A(x, 1) — E(ex'A(x, t)), (12.1.9)
Alx,
o ey dAD (12.1.10)
dt

= —ex-(aAg;’ 2 +(x-V)A(x, t)). (12.1.11)

It is at this stage that we can make approximations based on the physics of the
situation. The second term in this equation can usually be neglected since:

i) The first term is of order of magnitude w A for a monochromatic field.

ii) The term VAis of order of magnitude vecA/cw, and if the typical speed of the
atom is v, the second term is of order of magnitude v/c smaller than the first
term, and is thus almost always negligible.

iili) We therefore use the approximate form for the interaction Lagrangian

Lt = ex-E(x,t). (12.1.12)
iv) This form depends on the derivative of field A(x, ) and this means that the
field canonical momentum variable is no longer €y E, but becomes
D(x,1) = E(x,t) — ex(1) 5(x — x(1)). (12.1.13)
The Hamiltonian then becomes
Dx, 0% B(x,0%) ex(t)-D(x(1),t) e*x(1)?
S-C=H0+fd3x{ x,0* B0 }_ (#)- D(x(2) )+ex(t) 50
2¢€p 20 €0 €0
(12.1.14)
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The final term requires interpretation, and we should take the delta function
as really being some representation of the size over which the interaction takes
place, thus we can reasonably set

5(00) — (12.1.15)

4nR3’
where R represents the effective size of the interacting system. The term then
gives a correction to the electrostatic potential which is a factor = (x()/ R)3
times the Coulomb potential. The correction is an artifact of our neglect of
the second term in (12.1.11), and should not be taken as fundamental. We
shall neglect it from now on.

d) The Electric Dipole Approximation: It is D and A which are basic to the Ham-
iltonian (12.1.14), but since D = ¢ E except at the position of the atom, we shall
not make the distinction, and as our basic Hamiltonian we shall take (12.1.14) with
the substitution D — ¢ E, which is equivalent to the neglect of the delta function
term.

Furthermore, in practice the wavelength of the light is thousands of times larger
than the size of an atom, so that the dependence on position of the interaction
Hamiltonian is negligible. Assuming then that the atom is located at x = 0, we
may write

Vint(f) — —ex- E(0). (12.1.16)

This approximation is known as the electric dipole approximation.

e) Atom-Field Hamiltonian in the Electric Dipole Approximation: The Hamil-
tonian for the full system, after making approximations and simplifications, be-
comes

H = Hatom + Hgm + Hin, (12.1.17)
with
P
Haom = om +ed(x), (12.1.18)
Hew = Y hoy(afa+1), (12.1.19)
k
Hine = -d-E(0). (12.1.20)
Here, we have defined the electric dipole moment operator
d=ex. (12.1.21)




12.1 Interaction with the Quantized Radiation Field 147

12.1.2 The Two-Level Atom Approximation
If the energy eigenstates of the atom are written |i) with energy eigenvalue E;,
then we can write
Hpom = ) Eili)(il, (12.1.22)
i

ex =Y diflf)il (12.1.23)
fii

We now make a drastic approximation—we will neglect all but two eigenstates,
an excited state |e, E,) and a ground state |g, Eg). This should give a basic under-
standing of how transitions happen from one state to another.

We can write

1 0
le) = (0), lg) = (1), (12.1.24)
and consequently in the two-state approximation
E. O
Hatom = ( 0 Eg), (12.1.25)
(0 deg
ex = (ng 0 ) (12.1.26)

We now use the expression (11.1.48) for the electric field operator, and find that
(noting that we are in the Schrédinger picture, so that the time dependences in
the electromagnetic field operators are omitted) the interaction Hamiltonian be-
comes

Hip = iho™ Z (aLK; - akk;) —iho™ Z (akxk - a;f(k) , (12.1.27)
k

k
and in which

_ Wi . _ _ W -
Kg = \/_Zheo deg -ui(0), Kk ‘/_27150 deg-ui(0). (12.1.28)

12.1.3 The Rotating Wave Approximation

A term like 0" a removes a photon from the radiation field, and raises the atom
from the ground state to the excited state, and the Hermitian conjugate term o~ a;fc
does the reverse. Provided the energy of the photon is similar to the energy dif-
ference between the two atomic eigenstates, this process is resonant, and conse-
quently is very significant. On the other hand, the term o~ a; lowers the atom’s
energy while also removing a photon from the electromagnetic field, which can-
not be resonant, and therefore is not an important process. The rotating wave
approximation corresponds to omitting terms which cannot be resonant. After

making this approximation, the interaction Hamiltonian becomes

Hip = ik a‘Za}ZxZ—cr*Zakkk . (12.1.29)
3 3
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We can also define the transition frequency by
E.—E
w = .% (12.1.30)

then choose the zero of energy so that Eg = 0, and write
Hatom — hole)(el = 1hw(1+07). (12.1.31)

Thus we arrive at the Hamiltonian for a two-level atom interacting with the elec-
tromagnetic field in the rotating wave approximation

H = hole)(el+ Y hogala+ih|o™ Y alx;—o* Y axy|. (12.1.32)
k k k

12.1.4 “Stripped-Down” Quantum Electrodynamics

The Hamiltonian (12.1.32), and the various approximations we have introduced in
Sect. 12.1.1-Sect. 12.1.3 represent a “stripped-down” version of the quantum elec-
trodynamics originally introduced in Sect. 12.1.1. This description is adequate for
most quantum-optical phenomena, and when it is not, it can be usually be ex-
tended appropriately. It will be used almost exclusively in the remainder of this
book.

12.2 Decay of an Excited Atom

In this section we will show how atomic decay, and hence spectral line broaden-
ing, arise from the solution of the Schrédinger equation for the Hamiltonian, in
an adaptation of a method formulated by Weisskopf and Wigner [49] in 1930. Al-
though approximations are made, it will become clear that the irreversibility im-
plicit in atomic decay arises as a result of the continuous energy spectrum of the
electromagnetic field rather than the approximations—thus Hamiltonian evolu-
tion and irreversibility are not incompatible.

12.2.1 Wavefunction and Initial Condition

We suppose that the initial state consists of no photons in the electromagnetic
field, and the atom in the excited state, as illustrated in Fig.12.1. From this state,
the rotating wave Hamiltonian can only create states of the form

lg.k) = alo”le,0) = a}lg,0), ' (12.2.1)
where:

i) |g,0) is the state with no photons, and the atom in the ground state.



12.2 Decay of an Excited Atom 149

le, t)

:f“/v\/\/\/\,/

g, k, 1)

Fig. 12.1. Decay of a two-level atom.

ii) |e,0) is the state with no photons, and the atom in the excited state.
If we write the time-dependent state of the system in terms of these states as

¥, 1) = ule, nle,0)+ Y ulg, k 1lg,k), (12.2.2)
k

then the Schrodinger equation yields equations of motion for the coefficients in
the form

inu(e,r) = houle,n)—iny xgu(g k1), (12.2.3)
k

ihu(g,k, 1) = hwru(g, k, t) +ihx; u(e, t). (12.2.4)
The assumed initial condition of an excited atom and no photons means
u(e,0) = 1, u(g,k,0) =0. (12.2.5)
a) Solving the Equations: The second equation can be integrated to give
. r N 7
u(k,g, 1) = e 'k y(k,g,0) + f dt’ e k=D e, 1. (12.2.6)
0

The initial condition u(k, g,0) = 0 means that the first term is zero, so we substi-
tute the resulting expression in the first equation to get

t A ,
ini(e, t) = houle, t) - ih f dt' u(e, t') {Z|xk|2e"‘”k"" ) } (12.2.7)
0 k

This can be simplified if we substitute
vie,1) = ule,ne'", (12.2.8)

and it becomes
t . ,
et = — f dt' vie,t) {Z|xk|2e““”k‘“’""’ ’}. (12.2.9)
0 k
b) The Markov Approximation: The function inside the curly brackets
Y-ty = Y [xpfe i@k, (12.2.10)
k

is central to the understanding of the decay. We can replace the summation by an
integral over frequency, and a density of states

3 ikel? — f doi glwpkp)l?, (12.2.11)
k
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where | (w)|? is the average over polarizations of |x|? at the appropriate value
of |k|. Thus

y(t—1t) — fo > dwi g(wp) |k (@) Pe @@=t (12.2.12)
The significant features of this equation are:
i) The frequency range of the term e~ @k~ (=) i the integral is (—co, ).
ii) w is itself a very high frequency.
iii) The coefficient of the exponential is a very smooth function.

These mean that y(¢ — t') is very small except when |z — ¢'| is very small. Thus, we
can neglect the time variation of v(e, ') inside the integral in (12.2.9), and write

t
(e ) =~ —viet) f y(e—t)dr'. (12.2.13)
0

The approximation that leads to the equation of motion in this form is known
as the Markov approximation—it enables one to replace the integro-differential
equation (12.2.9), which involves v(e, t') for all ¢’ < ¢, by the simpler first-order
differential equation (12.2.13). It now remains to evaluate the coefficient on the
right-hand side.

c) Significance of the Markov Approximation: The Markov approximation, as
it arises here, is the simplest example of how this concept arises in a quantum-
mechanical context. It is relevant because there are very different time scales in-
volved. The optical frequencies represent very fast time scales, whereas the decay
happens very slowly by comparison. The basic structures of the damping constant
and frequency shift which arise here are the same as those found in the more sys-
tematic formulations of damping and noise found in the remainder of this book.

d) Evaluation of the Coefficient: Now change variables to T = t— t/, and evaluate

the integral as fot dty (7). In this form, for typical values of ¢ the function y(t) is
essentially zero when 7 > f so we can set the upper limit of the integral to co with
very little error, and the integral can then be written

00 00 00 R
fo y(ndr = lim A dr fo doy gwp)k(wy)|?e I @Wk—wT=er (12.2.14)

Here we have inserted a convergence factor e ¢7, where ¢ > 0 is set equal to zero
at the end of the calculation. With this factor inserted, the order of integrals can
be interchanged, and we get

f )’(T)dr—llrnf dw g(“”‘)lk(‘"")lz (12.2.15)
For—w) re
1 0 2 £ _ i(wg —w)
_.l.lg(l)fo doglwp) k@il (W —-w)?2+e2  (wWp—w?+e?]’
(12.2.16)

=1l +ibw. (12.2.17)
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In the limit £ — 0, we can write, for any reasonably well-behaved function f(z)

f —zzi 2 f(Adz — nf(0), (12.2.18)
z dz f(z)
f gzl @dz =P f z (12.2.19)

where P [ means the principal value integral. This is often summarized in the
formula

f dre 7T = n6(z)+ig. (12.2.20)
0

Exercise 12.1 Principal Value Integral: The principal value integral is defined
mathematically by

b ad b
Pf dzf@ _ . {f dzf(z) +f dzf(Z)}, (12.2.21)
50+ 4

—a z —a Z z

where a and b are positive. Show that, when the principal value integral exists, (12.2.19)
gives the same result for reasonably well-behaved functions.

e) Decay Constant and Lineshift: We can now put together the results we have
derived in (12.2.14)-(12.2.21), and thus write (12.2.13) in the form

e 1) = —(3r+idw)vie, ), (12.2.22)
r = 2ng(w)|x ()%, (12.2.23)
2
b = -iP f doy gl @l (12.2.24)
wW—Wg

Using the initial condition (12.2.5), this leads to the solution

—i(w+éw)t-T'tI2

u(e, t) = e (12.2.25)

Thus, the interaction with the quantized electromagnetic field leads to an expo-
nential decay of the excited state population |u(e, t)|?, with a lifetime given by 1/T.
The quantity I' is called the decay constant or the linewidth, while dw is known as
the lineshift.

The formula for the lineshift as given in (12.2.24) is divergent unless a cutoff is
imposed. In our drastically approximated treatment, in which only a single tran-
sition is treated, a cutoff would be necessary to eliminate the effect of other tran-
sitions, and would thus be a relatively small frequency. A full treatment using rela-
tivistic quantum electrodynamics still gives a divergence, which can be remedied
using renormalization theory—the resulting shift is known as the Lamb shift. The
order of magnitude of the shift calculated this way is still much the same as that
of the linewidth I', and is usually very small.
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The decay constant is a much more important parameter, since it leads to qual-
itatively different behaviour, namely, the decay of excited states and the conse-
quent broadening of the spectral line. Furthermore, the formula (12.2.23) derived
for it does not involve the use of cutoffs or renormalization.

12.2.2 Solutions for Atomic Decay and Radiated Field

So far we have studied mainly the state of the atom. The full solutions in this
degree of approximation are implicit in the method of solution chosen, and are
very illuminating. It is even possible to put these solutions in a form which looks
very like that found classically for the radiation from an electric dipole.

a) Full Solution for Field and Atom: Having obtained the solution for u(e, ), we
can go back to (12.2.6) to get

ulk,g,1) = x} f 4 e w1 g-tiorsurTi2N (12.2.26)
0
e—iwkt _ e—i(w+6w)t—l"t/2
=ik} 12.2.27
Kk Wg—w—0w+il'/2 ( )
The full solution is now given by (12.2.2), namely
P, 1) = ule, t)le,0) +Y_ u(g, k, 1)g, k), (12.2.28)
k

with the values of u(e, t) and u(g, k, t) given by (12.2.25, 12.2.27).

b) Entanglement between the Atom and the Electromagnetic Field: The quan-
tum state |V, t) is an entangled state. This is a state representing two distinct phys-
ical subsystems A and L (in this case the atom and the electromagnetic field) in
which it is not possible to write the state as a simple direct product |a) ® |}, no
matter what bases are chosen for each of the subsystems.

In this case, we can write

le,0) =le)®[0), g, k)=Ig)e®lk), (12.2.29)

but there is no way of factoring |'¥, ) itself in the same way into a product of the
form |atom) ® |light). The simplest consequence of this is that if a photon is de-
tected, then the atom is in the ground state. Even if the photon is detected 100
metres away from the atom, it is instantly known that the atom is in the ground
state.

Quantum entanglement is the foundation of quantum information and quan-
tum computation, and is treated more extensively in Book II.

c) The Radiated Electromagnetic Field: In this state it is clear that
(¥, tlaxl¥, 1) =0, (12.2.30)
(¥, tlo*|¥,t) = 0, (12.2.31)
(P, tlo |, 1) = lule, > = lu(g, k, 1% =2lu(e, )|* - 1. (12.2.32)
k
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Since (¥, tlax| ¥, t) = 0, there is no mean electric field, nor any polarization, which
would require non-vanishing (¥, tlo*|¥,1). There is of course a mean square
field, and a mean Poynting vector, since these are bilinear in creation and destruc-
tion operators.

One would like to get a reasonably simple idea of the propagating radiated elec-
tric field, and we can do this by noting that

W, tlo" ar|P, £y = u” (e, u(g, k,t) #0. (12.2.33)

This is a consequence of the entanglement property noted above; it says that there
can be a non-vanishing electromagnetic field if the atom is in the ground state.
Making the replacement o* — ¢~ in this equation gives zero, showing that it is
not possible for there to be a non-vanishing electromagnetic field if the atom is in
the excited state.

With these solutions we can now calculate the mean value
(B (x, 0005 (1) = (¥, tIEY 00}, 1). (12.2.34)

In this expression, the subscript S emphasizes that we are in the Schrodinger pic-
ture, and the operator is not time-dependent. To evaluate this expression we need
the expression (12.1.2) and this leads us to evaluate

(ap(Do™* (1)) = (@l (Do~ ()" = (¥, tlar|V¥, 1) = u* (e, D u(g, k, 1), (12.2.35)
* o—Tt/2 —i(wg—w-dw)t -T't/2
_Ke e i@r—w -e
- { oo sariiriz (- (12.2.36)

The mean value we want is then
1
(EM(x,00™" (1)) = 12(2—?)2 (ar(o™ (D) ug(x). (12.2.37)
k 0

The expression can be evaluated, though there is a lot of algebra involved. The
final result is

e(i(w+5w)—F/2)t V x (deg xV (G(Ct _ r)e(i(w+6a))—I‘/2)(r—ct)/c))

22m)3eor ’
(12.2.38)

(EM(x,00 (1) =

where c is the speed of light and r = |x|. The first factor in braces is the time de-
pendence appropriate to o+, while the remaining factor is a propagating damped
outgoing wave.

Exercise 12.2 Calculation of the Radiated Field: Verify the result (12.2.38).
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12.3 The Two-Level Atom in a Strong Classical Driving Field

Atoms can be manipulated in a wide variety of ways by the application of strong
coherent optical fields, for which the quantum nature of the optical field plays
a rather unimportant réle, and thus may be considered to be classical. In this
section we will firstly show how transfer from one state to another can be effected,
and then discuss the basic principle of an optical trapping potential for a two-level
system.

12.3.1 Interaction Hamiltonian

We will develop our treatment in close analogy with that given in Sect. 12.1.1 and
Sect. 12.1.2 for the interaction with a quantized electromagnetic field. As in those
sections, we start in the Schrédinger picture, but in this case there is no electro-
magnetic Hamiltonian, and the time dependence of the classical electromagnetic
field must be included explicitly in the Schrodinger picture Hamiltonian. Thus,
this takes the form

H = Hatom + Hint, (12.3.1)
with
Hatom = —’ﬁ+e¢>(x), (12.3.2)
2m
Hpe = -d-E(0,1). (12.3.3)

Here the electric dipole moment operator is, as previously,
d=ex. (12.3.4)

a) Two-Level Approximation: The interaction with a classical field can then be
made with the electric dipole approximation and the two-level system approxi-
mation, leading to the Hamiltonian

Ee deg * E(O, t)
d;,-EQ0,)  Eg |

(12.3.5)

b) Monochromatic Electromagnetic Field: We consider first the case of a strictly
monochromatic electromagnetic field, which we introduce in the form (chosen
for the convenience of the calculations)

deg-E(0,1) = 2i€cos(wt). (12.3.6)

c) Schrédinger Equation in the Interaction Picture: We introduce an interac-
tion picture by writing the wavefunction in the form

Ae(t)eiwet)

A (eios! (12.3.7)

ly, 1) = Ac(1)el’|e) + Ag(r)e!“s’|g) = (
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Fig. 12.2. Near-resonant excitation of a

A
Detuning A I two-level system.
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and the Schrédinger equation in the interaction picture becomes

: 28
Ae(t) = 7e"""&'tcosthg(t), (12.3.8)

. 28*
Agln) = - — e '’ coswt A(1). (12.3.9)

Here we use the notation
hweg = Ep - Eg. (12.3.10)

The driven atom and its parameters are illustrated in Fig. 12.2.

12.3.2 Solution of the Schrodinger Equation

a) Rotating Wave Approximation: We can write
el coswt = Lel@rt!l 4 Lellwe—)t, (12.3.11)

We want to consider the situation in which w.g = w, so that the first term oscil-
lates very rapidly with time compared with the second, and we can assume that it
averages to zero on the time scale of the solutions of the equations of motion. In
this case, the equations simplify to

Ao(r) = %ei“""g“"" Ag(D), (12.3.12)

. e .
Ag(t) =— ?e_'(“’“g_w”Ae(t). (12.3.13)

b) Rabi Frequency and Detuning: We can simplify the equations by defining:

The detuning A = w-weg, (12.3.14)

[~

The Rabi frequency Qg h

d,, -E
—eg——| ) (12.3.15)

h

The phase of € by e =|&le. (12.3.16)




156 12. Atoms, Light and their Interaction

¢) Rabi Hamiltonian: We can remove the explicit time dependence of the coeffi-
cients by writing

ac(t) = Al ®N | a ()= Ag(ne,  A=¢l2-nla, (12.3.17)
which leaves the equations in the Rabi Hamiltonian form

d [ae(1) ae(1)

- = Hpabi(Qr,A , 12.3.18
o (ag(t)) Rabi ((2R )(ag(t)) ( )
in which

— —%QR
Hpabi (Qr,8) = R| | . (12.3.19)
_EQR 0

12.3.3 Optical Pulses

Using pulsed laser fields, it is possible to manipulate the quantum state of a two-
level system, and this forms the basis of concept of quantum state engineering.
In this case, the equation of motion remains the same as (12.3.18), but the Rabi
frequency becomes Qg (¢), a time-dependent quantity.

The most important special case of a pulse shape is the rectangular pulse

E for0<t<T,
&= (12.3.20)
{ 0, otherwise.

Here the step function must be understood as being “slow” on the optical time
scale that is, the step function is an idealization of the turning on and off of an
optical field, both of which take place over many optical cycles.

a) Validity of the Rotating Wave Approximation: The condition for the off res-
onant terms to be negligible requires that all time dependences retained and of
interest must be on a slow time scale. This means that

QR KW = weg, (12.3.21)
Al K@ =weg, (12.3.22)

and as well that £(¢) be slowly varying on the optical time scale, which requires
1 d& <w

&) dt

This means that a “instantaneous” turn on of a square pulse as in (12.3.20) has to

be interpreted as being slow on the optical time scale, but fast on the time scales

given by Qg and A.

Under these conditions, the coefficients a.(f) and ag () are also slowly varying
on the optical time scale.

(12.3.23)
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b) On-Resonance Rabi Oscillations: For A = 0 we have

. d ae)_( 0 —%QR(t)) e
ldt(“g “\-ior 0 ag |’ (12.3.24)

These equations can be solved exactly by writing them in terms of the total angle
given by the time integral of the Rabi frequency. Thus we introduce the variable
t
()= f Qg(t)dt, (12.3.25)
—00

as a new variable instead of time, and we then solve the equation exactly in the
form

ae(1) _ U, Qe (—00) ’ (12.3.26)
ag(t) ag(—OO)

cos%‘r(t) —isin%r(t))

(12.3.27)
—isinit(s) cosiT(r)

where U; = (

The probability of being in the excited state, having initially been in the ground
state, oscillates, a phenomenon called Rabi oscillations:
Pewg(t) =sin® 37(1) = 1 (1-cos7(1)). (12.3.28)
c) Particular Pulses:
i) A m-pulseis defined by a choice of the function £(¢) so that the total angle
generated from beginning to the end of the pulse is 7, that is
(o o}
7" (00) :f Qp(tydt=m. (12.3.29)
—o0

The effect of this is to invert the two-level system, so that

UL = ( _(; Y ) (12.3.30)

ii) A2m-pulseis similarly defined by a different choice of the function £(¢) so that
the total angle is 27, that is

00
72" (00) = f QF (t)dt=2m. (12.3.31)
—00
This pulse inverts the two-level system twice, thus returning it to its ground
state,
-1 0
2m _
Uz _( 0 _1) (12.3.32)

but with a negative sign for the amplitudes, because a rotation of a spin half
system by 27 induces a sign change.

iii) A pulse can be chosen to give any rotation angle required. By allowing non-
resonant pulses as well, we can also manipulate the relative phase of the ex-
cited and ground state amplitudes.
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12.3.4 Effective Potential on a Ground State Atom

We consider the case where Ag(0) = 1, and A,(0) =0, that is an atom initially in its
ground state. In this case we integrate (12.3.12) and substitute this into (12.3.13)
to get

. Q% rt o e .

Ag(D) = _TR fo dr' e Ag(t) - ge'AtAe(O). (12.3.33)
Consider the case where |Qp/|? is sufficiently small that Ag() varies slowly com-
pared to the oscillating exponential; in this case:

i) The second term will oscillate very rapidly on this time scale, and average to
zero—therefore we can omit this term.

ii) Because Ag(t) varies slowly, we can write

. o L At
Ag(t) = —TAg(t)f dar' e’™"=1, (12.3.34)
0
Qz l_eiAt
:°"R
= —i—L Ag(t 12.3.35
i Ag(— ( )

a) The Optical Potential: As above, on the time scale in which Ag(f) changes, we
can neglect the rapidly varying exponential term, to get a simple equation for the
ground state amplitude

inA hy A 12.3.36
1 g(l’) = 4_A g(l’). (12.3. )
This is a very simple kind of Schrodinger equation for the ground state atom under
the influence of an off-resonance light field, in which there is effectively an optical
potential defined by

2
nO?

R 12.3.37
A ( )

Vopt =

Fig. 12.3. Left: Schematic of an optical trap created by a tightly focused laser beam; Right:
Individual atoms can be trapped on demand in a FORT [50], and the image shows a single
85Rb atom trapped in a FORT in the laboratory of Dr Mikkel E Andersen at the University
of Otago (June 2010), where the technique was developed. (Image kindly supplied by Dr
Andersen.)
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b) Properties of the Optical Potential:

i) The result requires that A > Qp, since the time rate of change of Ag; must be
very much slower than that corresponding to A. From (12.3.37), this requires
that Q% /A < A, giving the result.

ii) Red detuning means that w < wg, that is the driving field has a frequency less
than the transition frequency. In this case Vg < 0, and the potential attracts.

iii) Blue detuning means that w > w.g, that is the driving field has a frequency
greater than the transition frequency. In this case Vyp > 0, and the potential
repels.

¢) Optical Trapping—the FORT: The acronym FORT means the Far Off Reso-
nance Trap. If we take a spatially dependent optical field, in which the spatial
dependence of the field is on a spatial scale much larger than that of the atomic
wavefunction, the Rabi frequence becomes spatially dependent Qg(x), and the
optical potential also becomes spatially dependent. The energies involved are in
practice quite small, so that the potential is quite weak, but still strong enough to
trap atoms at microKelvin temperatures—see Fig. 12.3.

Exercise 12.3 Direct Derivation from the Hamiltonian: Find the energy eigenval-
ues of the Hamiltonian matrix (12.3.19), and show that when A > Qp, they give the opti-
cal potential. What else can you deduce from these eigenvalues?

12.4 Interaction of a Two-Level Atom with a Single Mode

By using an optical cavity the interaction with a particular mode of the cavity can
be so enhanced that the other modes can be neglected completely, leaving the
Jaynes—Cummings [51] Hamiltonian

H = Ho+H,, (12.4.1)
Ho = ihwo.+hwa'a, (12.4.2)
H) = hglac* +a'o™). (12.4.3)

Notice that [Hy, H;] = 0, so that we can move to the interaction picture without
changing the interaction Hamiltonian.

If the initial state of the system is |e, 1), a state of n photons with the atom ex-
cited, the only other state connected is |g, n + 1). Thus, the state can be written

W, 1) = ule, tle,n) +u(g, 1)lg,n+1), (12.4.4)

with u(e,0) =1, u(g,0) =0. (12.4.5)
and the equations of motion in the interaction picture are

ite,t) = gv/n+1u(g, 1, (12.4.6)

(g1 = gvn+1lule,n. (12.4.7)
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1 Fig. 12.4. Quantum revivals in the
occupation probability of the ex-
| j cited state as given by (12.4.13).

\

o

0 —

Setting Q, = gv/n+ 1, these equations have the solution
u(e, t) = cos(Qn1), (12.4.8)
u(g,r = —isin(Qy1). (12.4.9)

The system thus oscillates back and forth from excited to ground state of the atom,
with the energy moving back and forth from the field to the atom. The probability
of finding the atom in the excited state (and with n photons) is

P(e,1) = cos>Qnt. (12.4.10)

12.4.1 Quantum Collapses and Revivals

Suppose we put the field in an initial coherent state, and the atom in the excited
state
n

_1 a
¥,0) = le,a) = e 2" Y

le, n), (12.4.11)
n vVn!
then this state evolves into
an
W, 5 = e 1% Y Z_(cosQy tle, n) +sinQ, tlg, . (12.4.12)
R

The probability of occupation of the excited state is
a n
P(e,n = e 1’y %cos2 Qnt. (12.4.13)
7 !

The different frequencies are incommensurate with each other, and soon get out
of phase, so the probability of the excited state decays initially. However, since
there are only a finite number which are effectively occupied, eventually the im-
portant ones can get in phase again, and the probability has a quantum revival,
as illustrated in Fig. 12.4. The terminology “quantum revival” reflects the fact that
this behaviour is a direct consequence of quantization.



